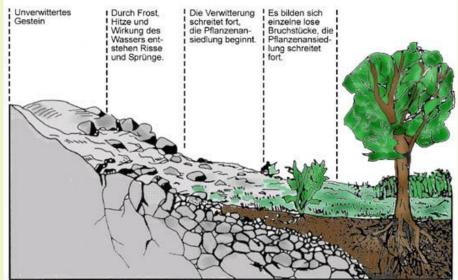
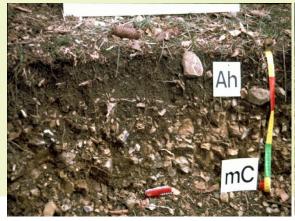

Landesbetrieb Wald und Holz Nordrhein-Westfalen

Braucht der Wald Kalk


Norbert Asche, Gelsenkirchen

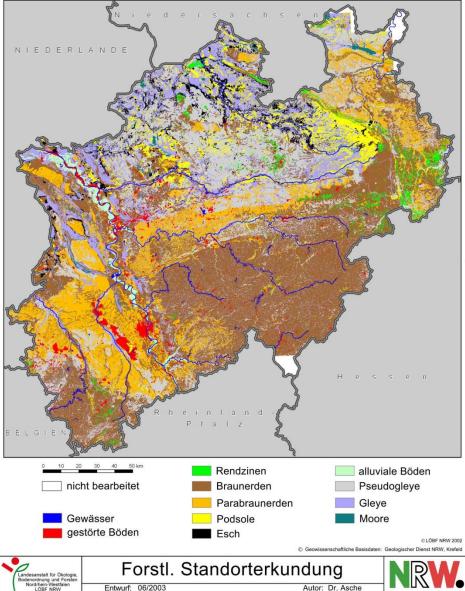
Durch die Verwitterung der Gesteine entwickeln sich Böden mit typischen Merkmalen

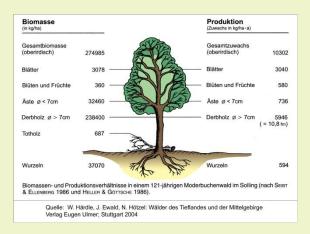


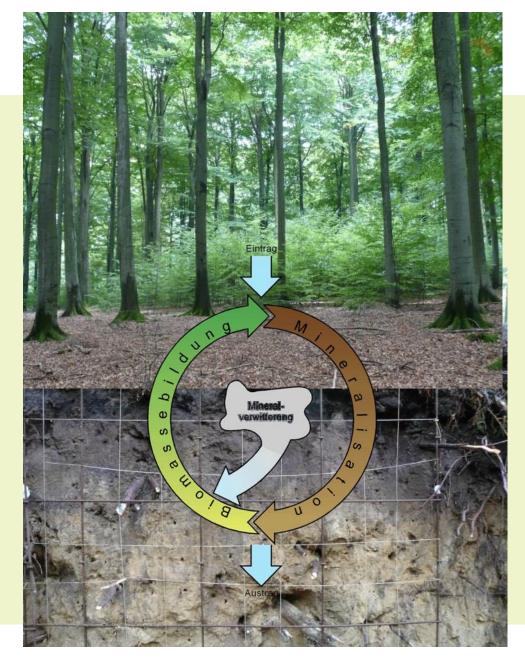
Böden sind der obere Teil der Erdrinde

im Verzahnungsbereich Atmosphäre, Lithosphäre, Biosphäre, Hydrosphäre

Böden sind das Produkt einer langen Entwicklung Umweltfaktoren bewirken Stoffumwandlung (Auf-, Abbau), Horizontfolge

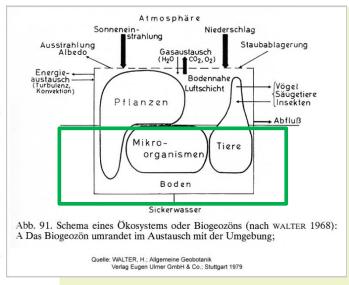

Böden entwickeln verschiedene Eigenschaften die sich dynamisch weiterentwickeln


Landesbetrieb Wald und Holz Nordrhein-Westfalen


Hauptbodentypen in Nordrhein-Westfalen

Boden: zentraler Ort von Waldökosystemen

Boden als Lebensraum


(versteckte Biodiversität)

Die wichtigsten Vertreter der Bodenflora und -fauna

Im Boden ist die Biodiversität größer als auf dem Boden!

- insbesondere in nicht versauerten Böden -

Hundertfüssler (Chilopoda)

Doppelschwanz (Diplura)

Enchyträe: Zu dieser Familie der Ringelwürmer gehört auch der Regenwurm.

Tausendfüssler Asseln Zweiflügler-Larven Regenwürmer

Bilder: European Atlas of Soil Biodiversity, EU, 2010

Dossier Boden > umwelt 4/2011

21

Boden als "Humusmaschine"

Vom Blatt zum Mullhumus

Zersetzte Laubstreu (Wald): ca. 3 t atro/(ha*a)

Ständige Auflo Bildung von Rollaggregaten; I alle grabenden und den Boden durchwühlenden Tiere

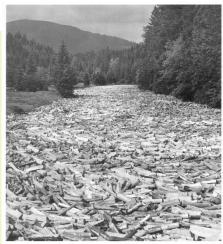
Abb. 125. Abbau der Buchenstreu und Mullbildung (Vogelsberg) in 5 im Waldboden aufeinander folgenden Zersetzungsphasen (nach ZACHARIAE, aus SCHALLER).

Verlag Eugen Ulmer GmbH & Co.; Stuttgart 1979

Bodenversauerung

Von Bodenversauerung spricht man, wenn von außen oder durch bodeninterne Prozesse mehr Protonen von Säuren eingetragen werden, als der Boden neutralisieren kann. Sie wird verstärkt, wenn die basischen Reaktionsprodukte von Neutralisationsreaktionen ausgewaschen bzw. ausgetragen werden.

In der Folge nimmt der Basenvorrat ab und am Ende sinkt der Boden-pH ab.


Böden in humiden Klimabereichen versauern im Laufe ihrer Entwicklung (der Pedogenese). Dieser an sich natürliche Vorgang kann durch menschliche Einflussnahme verstärkt werden.

Quelle: https://de.wikipedia.org/wiki/Bodenversauerung

Bodenversauerung durch Biomassenutzung

Landesbetrieb Wald und Holz Nordrhein-Westfalen

Eindrucksvoll belegt diese Aufnahme der "Kali und Salz AG. Landwirtschaftliche Beratungsstelle" die Dimensionen einer Papierbolz-Trift am 13. Juni 1958 auf dem Regen bei Fällenrechen in der Gemeinde Theresienthal im Landkreis Beran (Michaelmann)

Trift und Flößerei waren his ins 20. Jahrhundert ein ebenso einträglicher teie unwerzichtbarer Wirtschaftsfaktor. Seit der 1950er Jahren sind die "Gaudi-Floßfahren" ein – ebenfalls lukrativer – Tourismus- und Freizeitfaktor. Zu seben ist bier die Blöchertrift im Flamitzbach bei Franenau im Jahr 1930.

Bei der Streunutzung werden abgefallene Blätter, Nadeln, Zweige und Äste zusammengerecht und in den Ställen als Einstreu verwendet. Dem Wald wurden so über Jahrbunderte Näbrstoffe entzogen, die Böden verarmten und neue Bäume wuchsen kaum an, die alten Bäume verkrüppelten. Im Nürnberger Reichswald wurden die Streurechte noch nach dem Zweiten Weltkrieg genutzt.

Quelle: Bayerns Wälder, 250 Jahre Bayerische Staatsforstverwaltung Hefte zur bayerischen Geschichte und Kultur, Bd. 27, 2002, S. 39

Abbildung 5: « Das Bettlauben im Gonzenwald. Das Laubsackfuder wird festgebunden. »

Um 1940, F. Moser-Gossweiler, Romanshorn. Privatarchiv M. Bugg, Berschis.

Quelle: Schweiz. Z. Forstwes. 157 (2006) 8: 348-356

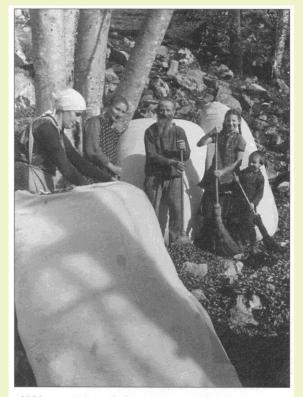


Abbildung 3: «Beim Bettlauben im Gonzenwald ist die ganze Familie beschäftigt.»

Um 1940, F. Moser-Gossweiler, Romanshorn. Privatarchiv M. Bugg, Berschis.

Quelle: Schweiz. Z. Forstwes. 157 (2006) 8: 348-356

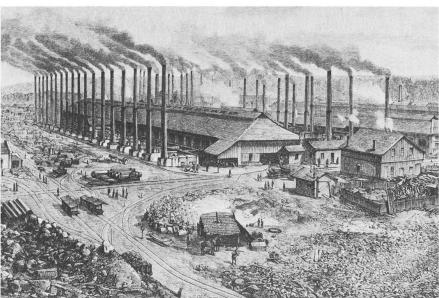
Biomassenutzung verändert den Boden

Die Grundfäte
ber
Agricultur-Chemie
mit Rücksicht
auf bie in England angestellten Untersuchungen.
28 он
Zuftus von Liebig.
3weite,
burch einen Rachtrag vermehrte Auflage.
Braunschweig,
Drud und Berlag von Friedrich Bieweg und Sohn.
1855.

- 3) In den Producten des Feldes wird in den Ernten die ganze Quantität der Bodenbestandtheile, welche Bestandtheile der Pstanzen geworden sind, hinweggenommen und dem Boden entzogen; vor der Einsaat ist der Boden reicher daran als nach der Ernte; die Zusammensehung des Bodens ist nach der Ernte geändert.
- 4) Nach einer Reihe von Jahren und einer entsprechenden Unzahl von Ernten nimmt die Fruchtbarkeit der Felder ab. Beim Gleichbleiben aller übrigen Bedingungen ist der Boden allein nicht geblieben was er vorher war; die Alenderung in seiner Zusammensetzung ist die wahrscheinsliche Ursache seines Unfruchtbarwerdens.

Säureeinträge beschleunigen Bodenversauerung

Landesbetrieb Wald und Holz Nordrhein-Westfalen



Gelsenkirchen-Schalke: Mannesmann-Röhrenwerke und Glückauf-Kampfbahn 1924

Quelle: BRÜGGEMEIER, F.-J., Blauer Himmel über der Ruhr; Klartext-Verlag; Essen 1992

Fig. 1. Domestic pollution in a suburban area resulting from the combustion of coal on open grates.

Das Walzwerk der Burbacher Hütte bei Saarbrücken, um 1870.

Quelle: SPELSBERG, Gerd, Rauch Plage; Alano Verlag; Aachen 1984

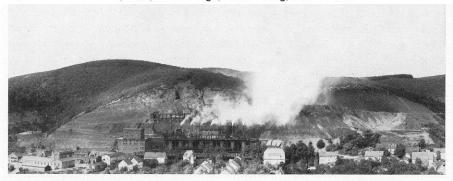


Abb. 1. Absolute Rauchblöße im westdeutschen Bergland bei Einwirkung von Spitzenkonzentrationen bis 15 p.p.m. SO₂. Foto: Wentzel.

Proceedings of the First European Congress on the Influence of Air Pollution on Plants and Animals Wageningen, April 22 to 27, 1968

Wageningen
Centre for Agricultural Publishing and Documentation

Säurebelastungen

(ausgewählte Beispiele)

Biomassenutzung

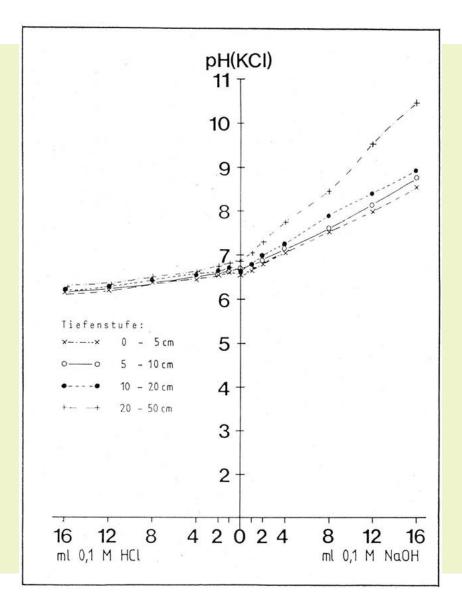
- 0,1 0,3 kmolc/(ha*a) bzw. 5 -15 kg CaCO₃/(ha*a) Stammholznutzung o. R.
- 0,2 0,5 kmolc/(ha*a) bzw. 10 -25 kg CaCO₃/(ha*a) Stammholznutzung m. R.

Säureeinträge als Folge der Luftverunreinigungen

- 2 6 kmolc/(ha*a) bzw. 100 -300 kg CaCO₃/(ha*a) Ende siebziger Jahre
- 0,8 3 kmolc/(ha*a) bzw. 40 -150 kg CaCO₃/(ha*a) Mitte neunziger Jahre/Heute

Säurebelastung durch Stickstoffvorratsabbau

ca. 0 - 10 kmolc/(ha) bzw. 0 -500 kg CaCO₃/(ha) Nitratauswaschung


Säureneutralisationskapazität Silikatverwitterung

ca. **0,2 - 1 kmolc/(ha*a)** bzw. 10 -50 kg CaCO₃/(ha*a)

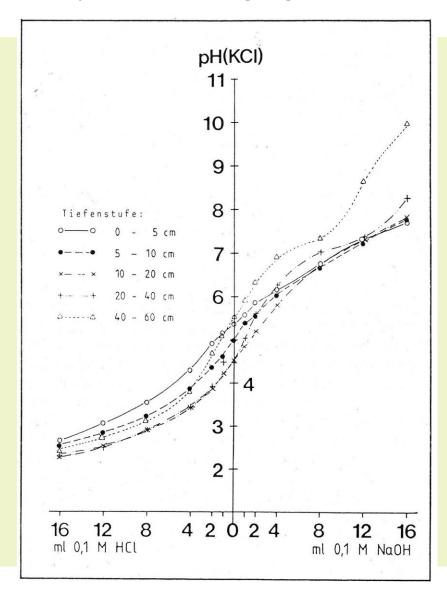
Wirkung von Säuren im Boden

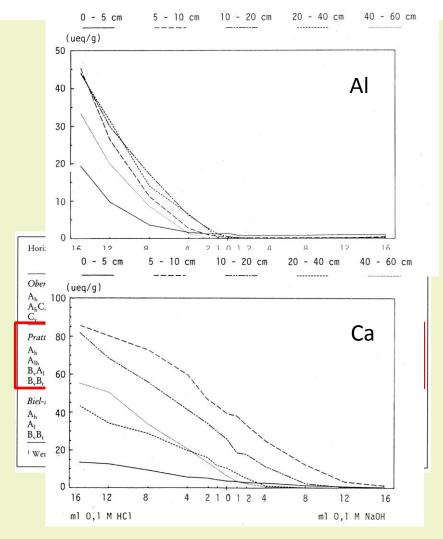
Säurepufferung im Boden

Beispiel: Carbonat im Feinboden

Horizont	Tiefe cm	Bodenart	pH CaCl ₂	C-org. %	CaCO ₃	KAK	Ca	Mg mmol	Mn IÄ/ko	Al	Fe
Oberbölc	hen: Bode	entyp Reno	lzina, H	umusfori	n L-Mull						
A_h	0- 15	uL	7,3	9,5	22,1	-	4991	12	0,3	0	0
$A_h^{n}C_v$ C_v	15- 25	uL	7,3	4,5	29,9	-	426 ¹	7	0,1	0	0
C _v	25- 95	utL	7,5	1,2	33,0	-	3891	4	0,2	0	0
rrattein:	Bodenty	. Braunerd	e-Parabi	aunerde	, Humusi	orm L-N	/Iull				
A_h	0- 10	uL	6,5	5,7	0	255	226	17	2,0	0	0
A_{lh}	10- 20	uL	5,0	3,6	0	187	163	14	3,7	0	0
B_vA_1	20- 40	uL	5,1	1,6	0	188	171	10	1,4	0	0
B_vB_t	40- 90	utL	6,0	1,0	0	216	205	7	0,3	0	0
Biel-Benk	en: Bode	ntyp Braur	erde-Pa	rabraune	rde, Hun	nusform	L/F-Mı	ıll bis n	nullartig	er Mode	er
A_h	0- 10	U	3,9	3,1	0	69	28	5	5,4	27	0,3
A_1	10- 35	U	3,8	0,9	0	55	9	4	1,4	39	o o
B_vB_t	35-110	utL	4,2	0,5	0	82	36	17	1,1	26	0
05 045		hbares Ca ü									

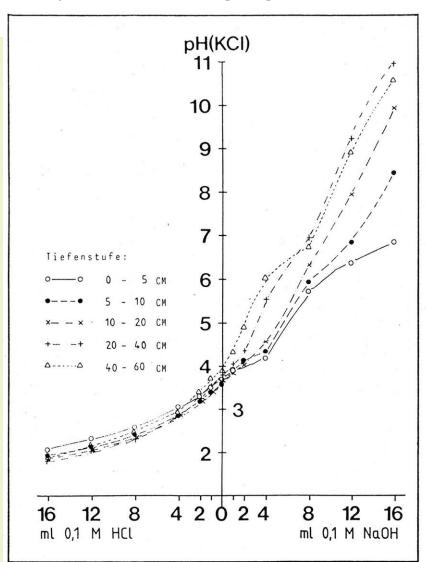
Quelle: ASCHE, N., FLÜCKIGER, W., 1988: Säurepufferung im Boden und ihre Bedeutung für die Stabilität von Waldökosystemen in der NW-Schweiz.


Forstw. Cbl. 107, 219-229


Säurepufferung im Boden

Landesbetrieb Wald und Holz Nordrhein-Westfalen

Beispiel: Basensättigung im Feinboden >95%



Quelle: ASCHE, N., FLÜCKIGER, W., 1988: Säurepufferung im Boden und ihre Bedeutung für die Stabilität von Waldökosystemen in der NW-Schweiz. Forstw. Cbl. 107, 219-229

Beispiel: Basensättigung im Feinboden <50%

Säurepufferung in diesem Boden erfolgt im Wesentlichen durch **Freisetzung** von **Al** und **Fe**

Horizont	Tiefe cm	Bodenart	pH CaCl ₂	C-org. %	CaCO ₃	KAKe	Ca	Mg mmol	Mn IÄ/kg	Al	Fe
Oberbölc	ben: Bode	ntyp Reno	dzina, H	umusfori	n L-Mull						
A_h	0- 15	uL	7,3	9,5	22,1	_	4991	12	0,3	0	0
A_hC_v	15- 25	uL	7,3	4,5	29,9	-	426 ¹	7	0,1	0	0
C _v	25- 95	utL	7,5	1,2	33,0	-	3891	4	0,2	0	0
A _h A _{lh} B _v A _l B _v B,	0- 10 10- 20 20- 40 40- 90	Braunerd uL uL uL uL utL	6,5 5,0 5,1 6,0	5,7 3,6 1,6 1,0	0 0 0 0 0	255 187 188 216	226 163 171 205	17 14 10 7	2,0 3,7 1,4 0.3	0 0 0	0 0 0
Biel-Benk	en: Boder	ntyp Braur	nerde-Pa	rabraune	rde, Hun	nusform	L/F-Mı	ıll bis n	nullartig	er Mode	er
A_h	0- 10	U	3,9	3,1	0	69	28	5	5,4	27	0,3
A_1	10- 35	U	3,8	0,9	0	55	9	4	1,4	39	0
B_vB_t	35-110	utL	4,2	0,5	0	82	36	17	1,1	26	0
101 101		hbares Ca u									

Quelle: ASCHE, N., FLÜCKIGER, W., 1988: Säurepufferung im Boden und ihre Bedeutung für die Stabilität von Waldökosystemen in der NW-Schweiz. Forstw. Cbl. 107, 219-229

Boden speichert Säure

Beispiel BNK: Boden Pratteln und Biel-Benken

Biel-Benken						Pratteln					
Tiefe	TRD1	pH(KCl)	BNK bis pH 5,5	Kalkmenge	TRD1	pH(KCl)	BNK bis pH 5,5	Kalkmenge			
cm	g/cm ³		mmol IÄ/kg	t CaCO ₃ /ha	g/cm ³		mmol IÄ/kg	t CaCO ₃ /ha			
0- 5	1,1	3,7	74	2,0	1,0	5,3	7	0,2			
5 - 10	1,1	3,6	69	1,9	1,1	5,0	17	0,4			
10-20	1,3	3,6	61	4,0	1,3	4,5	30	2,0			
20-40	1,45	3,8	39	5,7	1,3	4,5	20	2,6			
40-60	1,6	3,9	12	1,9	1,6	5,5	0	0			

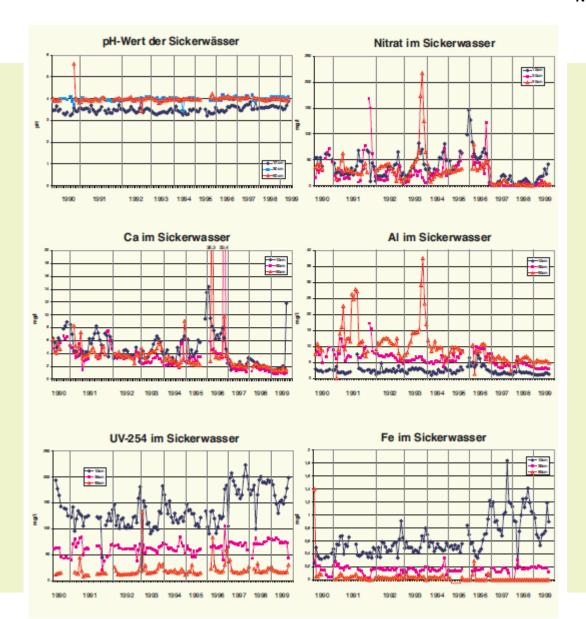
¹ Trockenraumdichte, geschätzt nach: Forstliche Standortaufnahme, 1980

Boden und Pufferbereiche

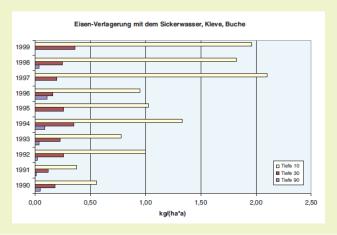
Tab. 64: Ökologische Gruppierung von Böden nach ihrem chemischen Bodenzustand (Gleichgewichtsmodell, Puffersubstanzen, Pufferreaktionen, Pufferraten, bodenchemische Veränderungen, Pufferbereiche mit dem Haupt-pH-Bereich, Ansprachemerkmale; M_b = Ca-, Mg-, K-Kationen; GbL = Gleichgewichtsbodenlösung; nach ULRICH 1981, 1983, SCHWERTMANN et al. 1987).

pH _{GbL}	8,6	6	,2 5	,0 4,	2 3	,8 3	,0
Pufferbereich		Carbonat	Silikat	Austauscher	Aluminium	Al / Fe	Eisen
wichtige Puffer- substanzen	> 0	< Humii	ncarbonat nstoffe → Silikate	< >	n (Al(OH _x (3-x)) Al-Hydroxosul		matit → → > Ferrihydrit
			xide/Hydroxide de/Hydroxide -		erale →		
Pufferrate [kmol/ha * a ⁻¹]	hoch (> 2) 0,1 - 2 sehr hoch hoch - mittel mittel bei der Präsens serlöslicher Huminsto						
boden- chemische Schlüssel- prozesse	Е	intkalkung	Freisetzung von Gitter- kationen Tonmineral- neubildung	Verlust austauschbarer Kationen, Abnahme der AKe	Lösung von si- likatischem Al; Tonzerstörung Protolyse von Al-Hydroxiden	Fe-Mobilisie- rung als org. Komplex	Bleichung bei hohem O ₂ -Partial- druck
Ansprache- merkmale	_ F	E kalkhaltig	FE kalkfrei M _b /AK _e = 1	M _b /AK _e > 0,15 (humushaltige Horizonte) bzw.	M _b /AK _e < 0,15 (humushaltige Horizonte) bzw.	Podsoligkeit (Aeh / Ahe) NH ₄ Cl-extra-	Podsolierung (Ae - Bs) viel NH ₄ Cl-extra-
Bodenlösung bei Gleichge-				M _b /AK _e > 0,05 (humusfrei)	M _b /AK _e < 0,05 (humusfrei)	hierbares H + Fe	hierbares H + Fe
wicht			> 5,0	> 4,2	4,2 - 3,8	3,8 - 3,2	< 3,2

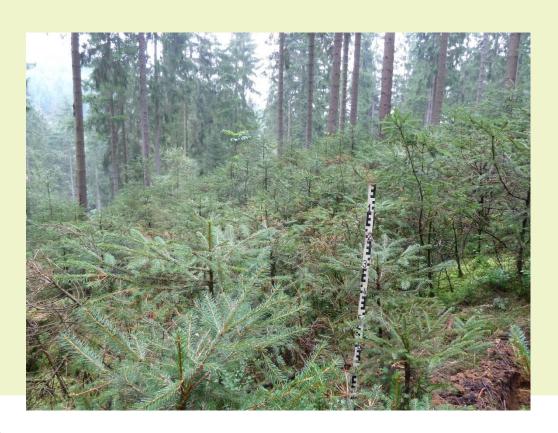
Säureneutralisation, Pufferreaktionen und chemischer Bodenzustand


Quelle: Forstliche Standortsaufnahme; IHW-Verlag, Eching 1996

Wirkung von Säuren im Boden Versuchsfläche Kleve Podsolbildung unter Rotbuche


Landesbetrieb Wald und Holz Nordrhein-Westfalen

Rohhumus bis Moder über Podsol-Braunerde unter Rotbuche

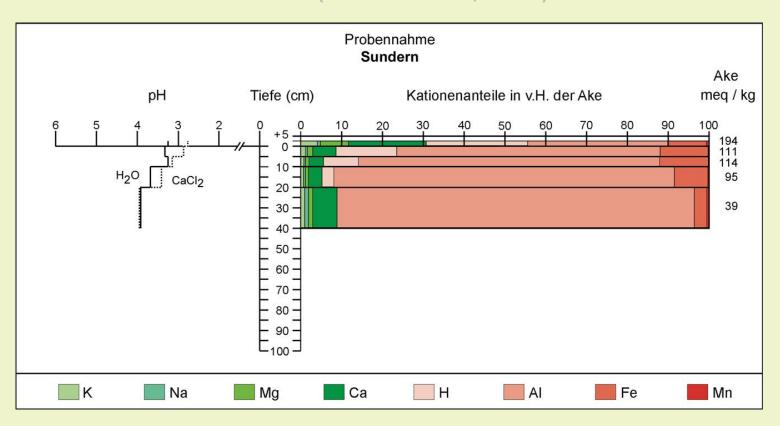


Wirkung von Säuren im Boden

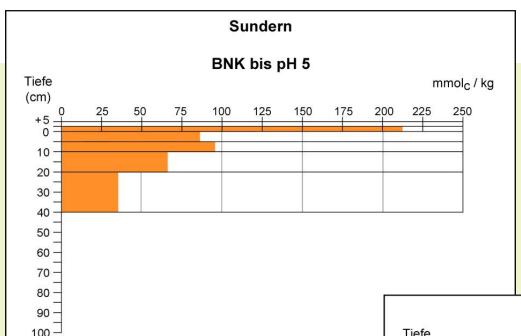
Versuchsfläche Sundern

Störung der natürlichen Verjüngung von Fichtenbeständen

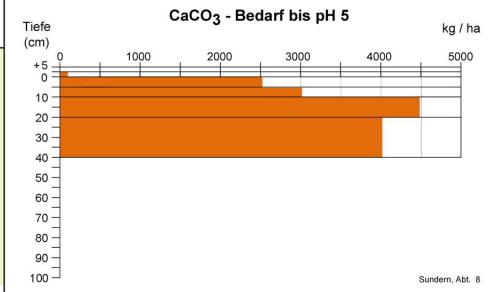
Landesbetrieb Wald und Holz Nordrhein-Westfalen



Eine intensive Bodenversauerung behindert die natürliche Verjüngung vitaler Fichten(misch)bestände; Kalkung dringend erforderlich?!


Chemische Kennwerte (arth. Mittel, N=5)

Quelle: ASCHE, N., DREESKORNFELD, H., BERGEN, P., 2014: Wuchsstockungen einer Fichtennaturverjüngung nach Bodenversauerung. Fallstudie im Stadtwald Sundern, Sauerland. AFZ/DerWald 5, 24-27


Landesbetrieb Wald und Holz Nordrhein-Westfalen

Im Boden gespeicherte Säuremenge

Kalkbedarf um gespeicherte Säuren bis pH 5 zu neutralisieren

Zwischenfazit: Bodenversauerung im Wald

- Verminderte Elastizität der Waldböden
- Änderung der Artenzusammensetzung
- Verlust an Biodiversität
- Störung der Stoffkreisläufe
- Bildung von Auflagehumus
- Nährstoffungleichgewichte bzw. mangel bei Waldbäumen
- verminderte Produktivität der Pflanzengesellschaft
- Podsolbildung
- Belastung des Grundwassers mit Kationensäuren (u.a. Al, Mn, Fe)

Bodenschutzkalkung

Um die Risiken der Säurebelastung der Waldökosysteme abzumildern, werden Wälder in NRW seit Anfang der achtziger Jahre gekalkt.

Ausgehend von Erkenntnissen von v. Liebig (1803 -1873):

G.L. Hartig empfahl 1834 die Wurzeln der Forstpflanzen anzufeuchten und in eine Mischung aus gleichen teilen Gips und Buchenasche zu tauchen

Biermanns empfahl bei den Aufforstungen in der Nordeifel Mitte des 19. Jahrhunderts eine Rasenaschedüngung. Auch für den Harz sind Rasenaschendüngungen in jener Zeit überliefert.

Planmäßige Kalkungen sind auf größeren Flächen im Wald von Frhr. v. Fürstenberg, Körtlinghausen um 1860 überliefert. Bei Bergheideaufforstungen bei Schmallenberg wurden Ende 19. Jahrhundert Kalkungen durchgeführt.

Im Bereich Eggegebirge (Kamlah, 1929) wurden umfangreiche Kalkversuche angelegt, um die mächtigen Rohhumusauflagen umzuwandeln. Diese Flächen wurden z.T. von Preußischen Forstl. Versuchanstalt untersucht und erhebliche anhaltende Zuwachssteigerungen in gekalkten Fichtenbeständen nachgewiesen.

1942 wurde vom Reichsforstamt die allgemeine Zweckmäßigkeit der Forstkalkung festgestellt.

- Neutralisation deponierter Säuren
- Verminderung der Säure- und Kationensäuregehalte in der Bodenlösung und am Austauscherkomplex
- Erhaltung bzw. Schaffung eines für das Wurzelsystem günstigen bodenchemischen Zustand
- Verbesserung der Nährstoff- und Basenversorgung von Blättern und Nadeln, um dadurch das Puffervermögen der Bäume im Kronenraum gegenüber Säuren zu stärken
- Erhaltung bzw. Schaffung eines Bodenzustandes, in dem Bodentiere (insbesonder Regenwürmer) aktiv sein können
- Förderung der Bodenvegetation, Biodiversität
- Auflagehumusformen in Richtung Mineralbodenhumusformen verändern
- Verminderung von toxisch wirkenden hohen Al- und H-Säurekonzentrationen
- Stärkung der natürlichen Verjüngung der Waldbäume
- Risiken der Bodenschutzkalkung

Sind die Ziele der Bodenschutzkalkung erreichbar?

40 Jahre nach der Ausbringung in einem Buchenbestand

Langfristige Wirkungen einer Kalkung auf Bodenvegetation, Humusform und pH-Wert

Von Norbert Asche und Ulrike Halverscheid

Ein heute ca. 86jähriger Buchenbestand wurde 1958 mit 9 t Kalkmergel/ha behandelt. Diese Fläche fällt durch einen markanten Wechsel bodenvegetationsfreier Zonen und Bereiche mit dichter, anspruchsvoller Bodenvegetation auf (insbes. Galium odoratum, Dentaria bulbifera; Abb. 1). Mit der hier vorgestellten Erhebung wurde geprüft, ob diese Heterogenitäten durch die 1994 36 Jahre zurückliegende Kalkung bedingt sind.

Die Versuchsfläche

Höhenstufe) im Wuchsgebiet Sauerland. Wuchsbezirk Rothaargebirge. Die Jahresmitteltemperatur beträgt ca. 6 °C und die Niederschläge erreichen im Jahresmittel ca. 1.300 mm. Der geologische Untergrund wird durch Tonschiefer der Fredeburger Schichten des Mitteldevon gebildet. Aus diesen Gesteinen haben sich basenarme Braunerden mit Moderhumus entwickelt. Die natürliche Vegetation ist der Hainsimsen-Buchenwald.

Bodenvegetation

Auf der Versuchsfläche wurden 10 krautige Pflanzen (Galium odoratum, Waldmeister; Dentaria bulbifera. Zwiebelzahnwurz: Gymnocarpium dryopteris, Eichenfarn: Senecio fuchsii, Fuchskreuzkraut; Luzula luzuloides. Weiße Hainsimse: Dryopteris carthusiana, Karthäuser-Wurmfarn: Avenella flexuosa. Drahtschmiele; Impatiens noli-tangere, Springkraut; Vaccinium myrtillus, Heidelbeere; Millium effusum, Flattergras und das Moos Polytrichum commune Frauenhaarmoos) angetroffen (Abb 1). Von diesen Pflanzen traten Galium oderatum, Dentaria bulbifera und Gymnocarpium dryopteris auf Teilflächen mit hohen Deckungsgraden auf. Die weiteren erfaßten Pflanzen wiesen geringe Deckungsgrade auf bzw. kamen z.T. nur vereinzelt auf diesen Flächen vor.

1) Abt. 132 Forstamt Winterberg, ab 1982 Privatbesitz

Humusform

liegt 685 bis 690 m ü. NN (montane Es konnten 5 Humusformen kartiert werden (Abb. 2):

> F-Mull: Horizontfolge OL - OF - Ah. Die organische Auflage ist geringmächtig und der Ah-Horizont reicht bis zu 10 cm Tiefe (im Mittel 5 bis 7 cm) mit einem unscharfen Übergang zum Bv-Gefüge: fein subpolyedrisch, z.T. krümelig, schwach kohärent.

> Moder, mullartig: Horizontfolge OL - OF -(OH) - Ah. Unter der OF-Lage ist eine OH-Lage zu erkennen, die z.T. filmartig und nicht flächig ausgebildet ist. Der Ah-Horizont ist 2 bis 8 cm mächtig mit einem deutlichen Übergang (3 bis 10 mm) zum Bv. Gefüge fein subpolyedrisch, schwach kohärent.

Moder, feinhumusarm: Horizontfolge OL -OF - OH - A(e)h. Die F-Lage mißt 1 bis 2 cm. ist stark vernetzt, die H-Lage ist flächig ausgebildet, bis 1,5 cm mächtig, bröckelig und stark durchwurzelt. Die Übergänge zwischen den Horizonten sind unscharf. Der A(e)h ist 2 bis 4 cm mächtig, schwach violettstichig mit einem z.T. scharfen Übergang zum Bv. Gefüge: Subpolyeder, schwach kohärent.

Moder, feinhumusreich: Horizontfolge OL -OF - OH - Aeh. Die F-Lage ist 2 bis 4 cm mäch-

Methode

Von der 4 ha großen Bestandesfläche wurde 1994 eine 1 ha große repräsentative Teilfläche ausgewählt, mit einem 10 x 10 m Raster überzogen, vermarkt und kartiert. Die Bodenvegetation wurde auf den Rasterteilflächen nach BRAUN-BLANQUET [2] aufgenommen. Für die Bestimmung der Humusformen und pH-Werte wurde im Mittelpunkt der Rasterteilfächen ein kleiner Bodeneinschlag bis 40 cm Tiefe angelegt. Hier wurde die Humusform angesprochen [7] und in den Tiefen 10 cm und 40 cm der pH-Wert in H_oO und CaCl, mit einer Einstabglaselektrode in der Bodensuspension gemessen.

Für 4 ausgewählte Punkte, die sich in der Humusform und der Bodenvegetation deutlich unterschieden, wurde die effektive Kationenaustauschkapazität (KAK,) und die Belegung der Austauscher bestimmt (Perkolation mit 1 N NH CI, [6]).

tig, vernetzt und z.T. verfilzt. Die H-Lage ist bis zu 5 cm stark (im Mittel 2 bis 3 cm), nicht scharfkantig brechbar, durchwurzelt, die Lagerungsart ist schichtig. Die Übergänge zwischen den Horizonten sind unscharf. Der Aeh ist 2 bis 3 cm mächtig, violettstichig mit einem z.T. scharfen Übergang zum Bv. Gefüge: Subpolyeder, schwach kohärent.

Moder, rohhumusartig: Horizontfolge OL .-OF - OH - Aeh. Die F-Lage mißt 2 bis 4 cm und ist schichtig bzw. sperrig ausgebildet. Die H-Lage ist 3 bis 6 cm (im Mittel 5 cm) mächtig, kompakt, i.d.R. unscharf brechbar, schwach durchwurzelt, wobei allerdings zahlreiche Grobwurzeln (> 2 mm) auftreten. Die Übergänge zwischen den Horizonten sind scharf (< 3 mm). Die H-Lage ist gut vom Mineralbodenhorizont Aeh zu trennen. Dieser ist 1 bis 2 cm mächtig, violettstichia, schwach gebleicht mit scharfem Übergang zum Bv. Gefüge: (Sub)-Polyeder,

pH(H2O)-Werte

In den Abb. 3 und 4 sind die gemessenen pH-Werte in den jeweiligen Rasterflächen und Tiefenstufen verzeichnet. Die farbliche Darstellung richtet sich nach den chemischen Pufferbereichen [8].

Entsprechend den in 10 cm Tiefe gemessenen pH-Werten können 35 der Rasterpunkte dem Aluminium-, 41 dem Austauscher-, 21 dem Silikat- und 3 Punkte sogar dem Carbonatpufferbereich zugewiesen werden. Die Säurestärke lag zwischen pH-Wert 3,91 und 7,18. Das bedeutet, daß die Wasserstoffionenkonzentration räumlich um den Faktor 1.000 dif-

In der Tiefe 40 cm wurden pH-Werte zwischen 4,17 und 6,46 gemessen. Jeweils eine Fläche wurde dem Aluminiumund eine dem Carbonat-, 28 dem Silikatund 70 dem Austauscherpufferbereich zugeordnet. Mit diesem Ergebnis ist die Heterogenität der Säurestärke auf der Versuchsfläche in dieser Tiefe geringer als in

Kationenaustauschkapazität

In Bereichen mit der Humusform Moder wurden Werte der KAK, von 140 bis 150 mmol/kg Oberboden und 50 bis 60 mmol/kg Feinboden in 40 cm Tiefe gemessen (Abb. 5). Diese Werte sind typisch für zahlreiche Waldböden des Sauerlandes [3]. Die Austauscher sind im Oberboden zu 18 v. H. (Profil 3) bzw. 40 %. (Profil 1) und in 25 bis 40 cm Tiefe

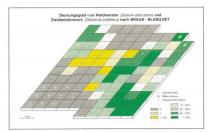


Abb. 1: Deckungsgrad von Waldmeister (Galium odoratum) und Zwiebelzahnwurz (Dentaria bulbifera) nach BRAUN-BLANQUET

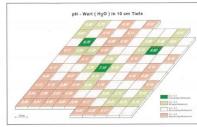


Abb. 3: pH-Wert (H2O) in 10 cm Tiefe

Abb. 2: Humusformen

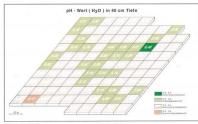


Abb. 4: pH-Wert (H_oO) in 40 cm Tiefe

Abb. 5: Bodenprofil mit der Humusform Moder (Fotos: Nolte)

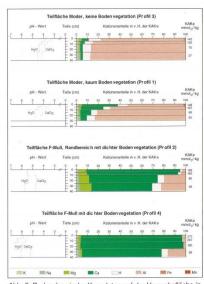
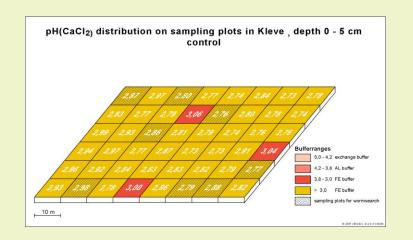
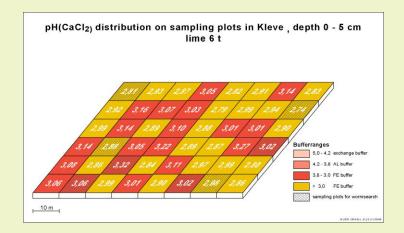
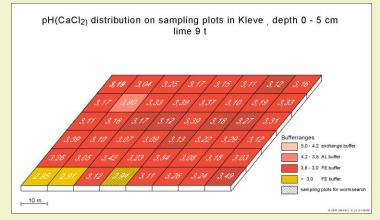


Abb. 5: Bodenchemische Kenndaten auf der Versuchsfläche in Winterberg 1992 (Grafik: Fuhrmann)

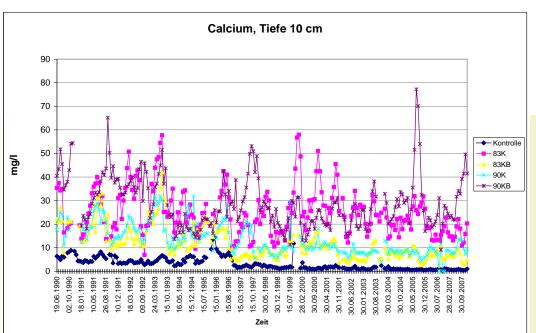

Dr. N. Asche ist Dezernent in der Landesanstalt für Ökologie, Bodenordnung und Forsten/Landesamt für Agrarordnung Nordrhein-Westfalen (LÖBF/LAfAO) Recklinghausen und dort zuständig für Fragen der Waldernährung/Standortkunde

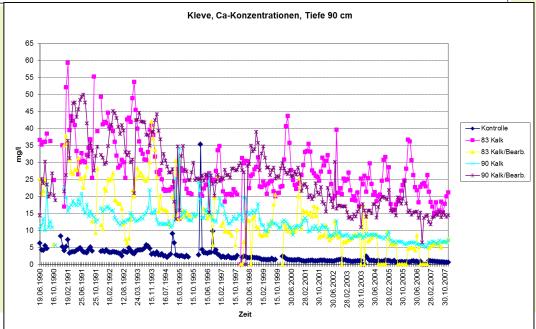
U. Halverscheid hat die Rasterkartierung in Winter berg im Rahmen einer Diplomarbeit (Forstl. Fak. d. Univ. Göttingen) 1994 durchgeführt.

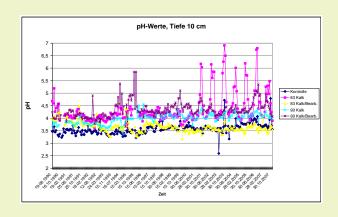

Landesbetrieb Wald und Holz Nordrhein-Westfalen



Rasterkartierung (Versuchsfläche Kleve)

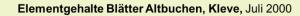


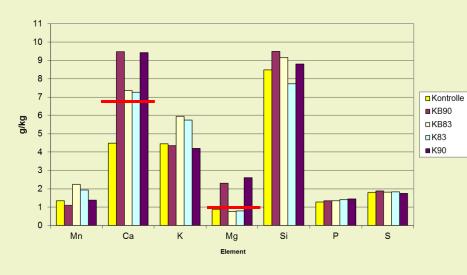




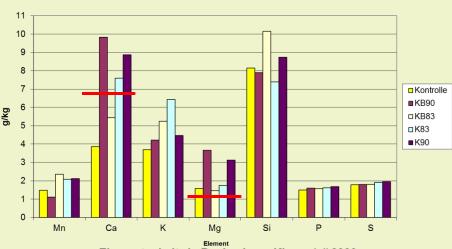
Landesbetrieb Wald und Holz Nordrhein-Westfalen

Bodenschutzkalkung und Sickerwasser

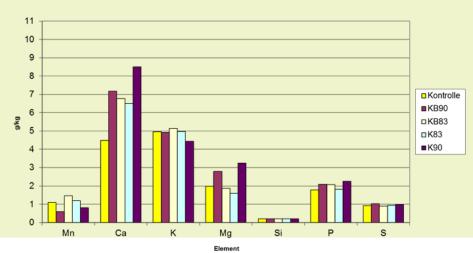

Beispiel: Kalkversuchsfläche Kleve



Mineralstoffversorgung von Buchenblättern und Früchten (Kleve, Juli 2000)


Landesbetrieb Wald und Holz Nordrhein-Westfalen

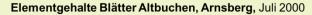
Elementgehalte von Buchennaturverjüngung, Kleve, Juli 2000

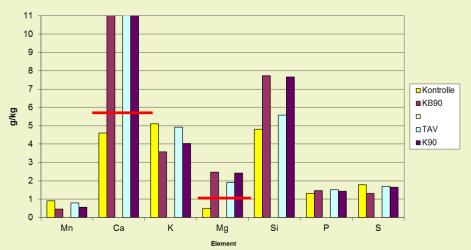


Elementgehalte in Bucheckern, Kleve, Juli 2000

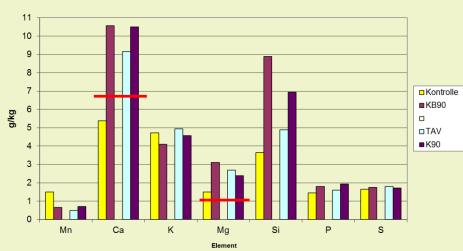
Ernährungsgrenzwerte (Göttlein et al., 2011)

Unterer Normalbereich:

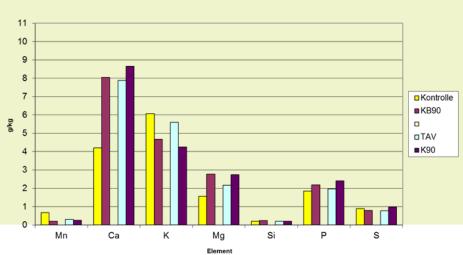

Mn	0,089	_	0,573	mg/kg
Ca	6,66	-	8,15	mg/g
K	6,08	-	6,95	mg/g
Mg	1,07	-	1,31	mg/g
P	1,23	-	1,38	mg/g
S	1,40	-	1,70	mg/g



Mineralstoffversorgung von Buchenblättern und Früchten (Arnsberg, Juli 2000)


Landesbetrieb Wald und Holz Nordrhein-Westfalen

Elementgehalte Buchennaturverjüngung, Arnsberg, Juli 2000



Elementgehalte in Bucheckern, Arnsberg, Juli 2000

Ernährungsgrenzwerte (Göttlein et al., 2011)

Unterer Normalbereich:

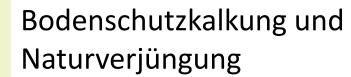
Mn	0,089	_	0,573	mg/kg
Ca	6,66	-	8,15	mg/g
K	6,08	-	6,95	mg/g
Mg	1,07	-	1,31	mg/g
P	1,23	-	1,38	mg/g
S	1,40	-	1,70	mg/g

Untersuchungen zum Vorkommen von Regenwürmern

Obereimer: Regenwürmer, Anzahl und Biomasse

				Life form of ea	arth wor	ns**		
plot	treatment	pH(H ₂ O)*	base saturation	epigeic	an	anezic		ogeic
	(year)		in % of CECe	spring autumn	spring	autumn	spring	autumn
			depth: 0 - 5 cm					

Number of worms per m²


Obereimer	0	х	3,49	2,0	0	0,7	0	0	0	0
		min	3,4	0,94		0				
		max	3,5	2,61		4				
	12 t lime	X	4,64	11,0	51,3	22,7	0	0	60,7	93,3
	(1983, 1990)	min	4,09	7	32	12			0	0
		max	4,93	13,7	84	40			260	332
	6 t ash	X	4,56	12,8	83,3	76	0	0	3,3	6
	(1994)	min	4,02	8,84	52	20			0	0
		max	5,14	13,5	124	104			8	32
Bad Driburg	Beech	х	6,52	99,0	10,4	0,4	14,8	14,4	60,4	16,8
	forest on	min	5,08	97,5	0	0	4	8	16	0
	limestone	max	7,1	99,5	24	4	20	24	116	84

Biomass of worms in g per m²

Obereimer	0	X	3,49	2,0	0	0,22	0	0	0	0
		min	3,4	0,94		0				
		max	3,5	2,61		1,33				
	12 t lime	X	4,64	11,0	9,03	3,9	0	0	7,23	18,04
	(1983, 1990)	min	4,09	7	5,65	1,08			0	0
		max	4,93	13,7	14,7	6,05			24,05	51,05
	6 t ash	X	4,56	12,8	20,38	15,02	0	0	2,91	0,79
	(1994)	min	4,02	8,84	9,98	2,96			0	0
		max	5,14	13,5	32,8	24,76			7,84	4,42
Bad Driburg	Beech	х	6,52	99,0	4,66	0,31	59,28	34	21,09	7,15
	forest on	min	5,08	97,5	0	0	24,32	2,2	6,28	0
	limestone	max	7,1	99,5	14,36	3,05	85,8	86,49	46,8	25,87

Hunau, Hochsauerland

Arnsberger Wald, Nordsauerländer Oberland

Bodenschutzkalkung und Baumwurzeln (Arnsberg)

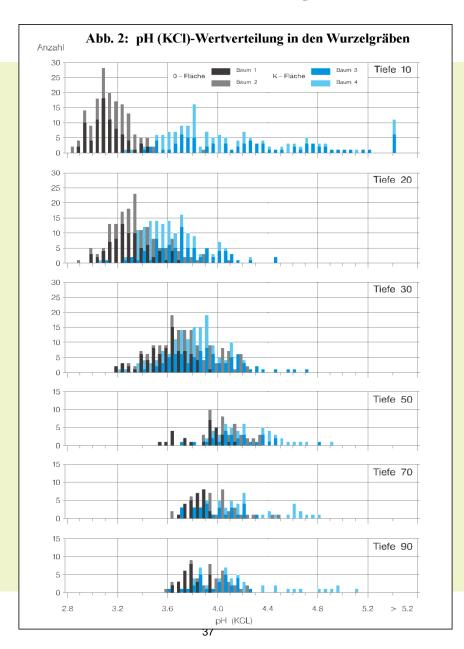
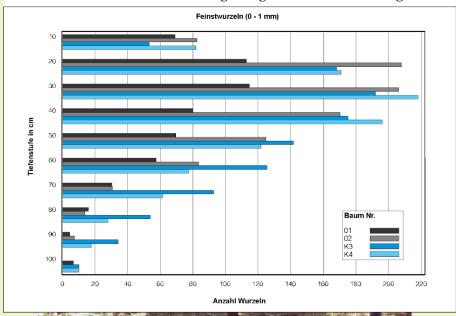



Abb. 5: Feinwurzelverteilung bezogen auf 1m Grabenlänge

Quelle: ASCHE, N., 1999: Bodenschutzkalkung und das Wurzelsystem der Rotbuche (*Fagus sylvatica*). Eine Fallstudie im Sauerland.

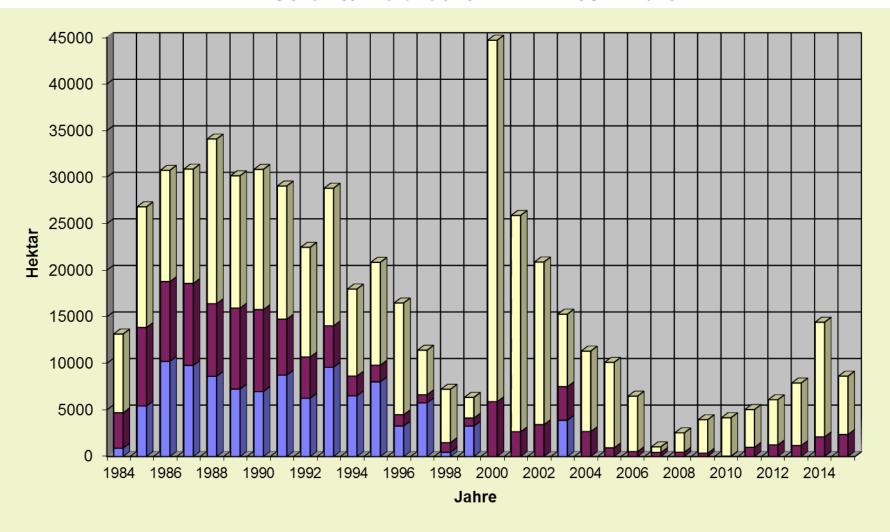
Forstw. Cbl. 118, 294-301

Zwischenfazit: Bodenschutzkalkung im Wald

Mit der Bodenschutzkalkung können Ziele dieser Maßnahme erreicht, die Vitalität der Bestände gestärkt und Belastungen nachgelagerter Umweltgüter vermieden werden.

Antwort auf die Frage: Braucht der Wald Kalk

Der Wald braucht Kalk!

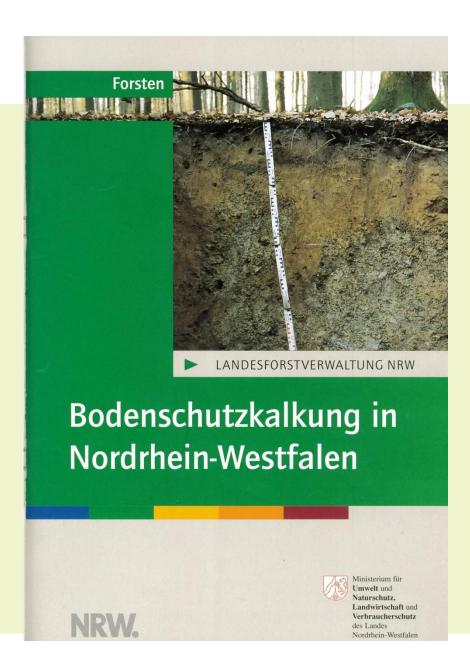

Jedoch ist es erforderlich aktuelle Säureeinträge weiter zu reduzieren und die Biomassenutzungen an die nachschaffende Kraft der Waldböden anzupassen.

Waldflächen mit Bodenschutzkalkung in NRW

Gekalkte Waldfläche in NRW 1984 - 2015

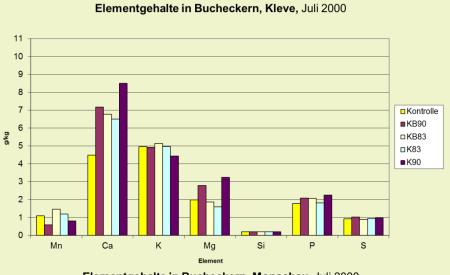
■Körperschaftswald

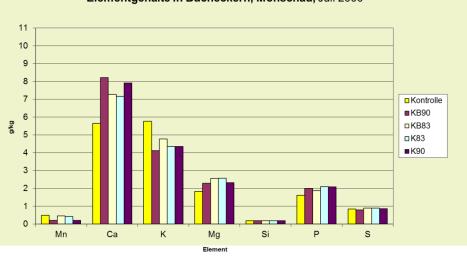
□ Privatwald


■ Staatswald

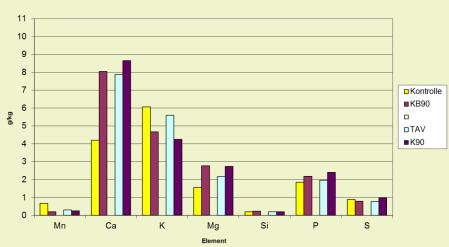
Schlußbetrachtung

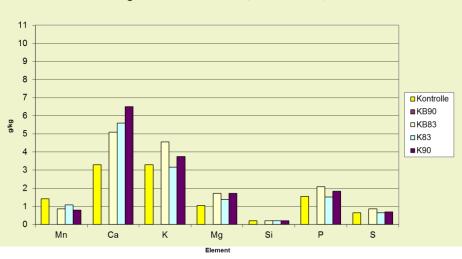
- Boden ist der zentrale Ort in Waldökosystem.
- Sein Zustand prägt die aufstockenden Wälder.
- Waldboden ist das Basiskapital jeden Forstbetriebes.
- Bodenversauerung mindert dieses Kapital i.d.R. irreversibel
- Bodenversauerung führt zu "Biodiversitätsverlusten"
- Bodenschutzkalkungen stärken Vitalität und Biodiversität der Waldökosysteme
- Der Wald braucht Kalk!


Vielen Dank für Ihre Aufmerksamkeit


Elementgehalte von Bucheckern, Juli 2000

Landesbetrieb Wald und Holz Nordrhein-Westfalen




Elementgehalte in Bucheckern, Monschau, Juli 2000

Elementgehalte in Bucheckern, Arnsberg, Juli 2000

Elementgehalte in Bucheckern, Hilchenbach, Juli 2000

Landesbetrieb Wald und Holz Nordrhein-Westfalen

Förderung der Bodenschutzkalkung

1. Kalkungsmaßnahmen werden im Frühjahr und im Herbst ausgeführt.

Für die Kalkungsmaßnahmen im Frühjahr muss der Förderantrag spätestens am 15.09. des Vorjahres vollständig und prüffähig im zuständigen Regionalforstamt vorliegen (Analyseergebnis der Bodenproben kann nachgereicht werden).

Für die Kalkungsmaßnahmen im Herbst sollte der Antrag am 15.03. desselben Jahres im Forstamt vorliegen.

Die 'Frist' kann einen Monat verlängert werden.

2. Dem Regionalforstamt sind zur Beurteilung der Zweckmäßigkeit und Unbedenklichkeit der geplanten Kalkung die Ergebnisse von Bodenanalysen (pH-Wert Messungen) vorzulegen.

(Näheres regelt Nr. 2.3.12 der RL: Je 100 ha eines festen Rasters sind anteilig zur darin enthaltenen Kalkungsfläche 1 Probe je angefangene 25 ha Kalkungsfläche zu nehmen; in gleichmäßiger, forstfachlich angemessener Verteilung .

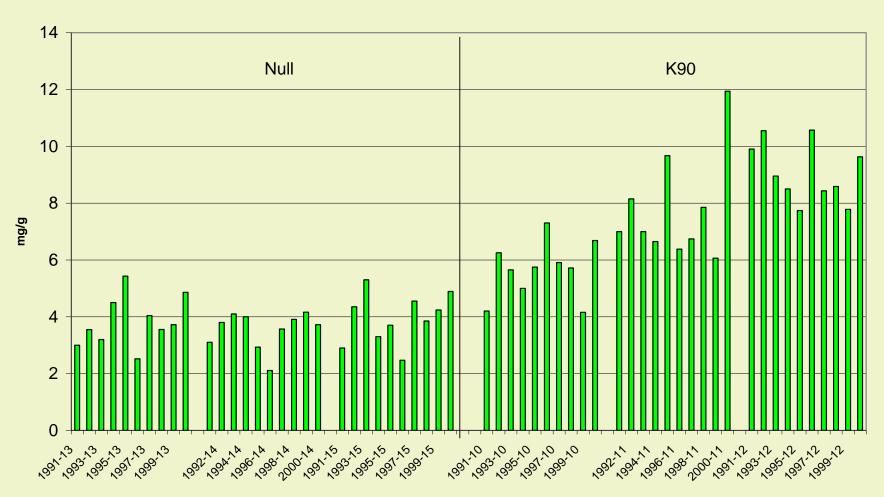
Die Entnahmepunkte sind unter Angabe der Satelliten Koordinaten in einer Karte festzuhalten.

Die **Bodenprobenahme und Analyse ist als Vorarbeit (Nr. 2.1.1. der RL) förderfähig**. Privatwald RL 80 % Förderung - höchstens 3.000 €. Körperschaftswald RL 50 % - höchstens 1.500 €.

Bodenproben sind auch dann förderfähig, wenn als Ergebnis keine Kalkungsbedürftigkeit besteht. Es gibt keine Bagatellgrenze für die Vorarbeiten.

- 3. Förderantrag für Bodenproben und Bodenschutzkalkung sollen zusammen gestellt werden.
- Für die Bodenproben den vorzeitigen Maßnahmenbeginn beantragen. Die Kalkung kann nur bewilligt werden, wenn die Analyseergebnisse vorliegen.
- 4. **Fördersätze für Kalkung**: Nach Privatwald RL 90 % der Nettokosten Nach Körperschaftswald RL 70 % der Nettokosten

Preise pro Hektar Kalkungsfläche ca. 230 € netto -- Eigenanteil ca. 67 €/ha im Privatwald (10 % der Nettokosten und die MwSt).


5. **Die Ausschreibung aller Kalkungsmaßnahmen erfolgt grundsätzlich zentral durch unsere Vergabestelle** (FBG'en die am Pilotprojekt Betreuungsdienstleistungen teilnehmen können, wenn gewünscht, selbst ausschreiben).

Ausschreibung erfolgt nach vereinfachten Kostenoptionen - Preis pro Hektar. Vorteil: Nach Vorlage der Wiegescheine (und ggf. Befliegungsprotokolle) kann zügig abgerechnet werden. Es müssen keine Rechnungen und Zahlungsbelege vorgelegt werden.

Bodenschutzkalkung und Buchenblätter (Kleve)

Ca-Gehalte von Buchenblättern, Flächen Null und K90, Kleve

Ausreichende Ernährung, BERGMANN, 1988: 3

3 – 15 mg/g TS

Normalbereigh, GÖTTLEIN et al, 2011:

6,66 - 14,03 mg/g TS